Numerical Approximation of Partial Differential Equations
Springer | Texts in Applied Mathematics | July 3 2016 | ISBN-10: 3319323539 | 535 pages | pdf | 8.48 mb
Springer | Texts in Applied Mathematics | July 3 2016 | ISBN-10: 3319323539 | 535 pages | pdf | 8.48 mb
Authors: Bartels, Sören
Matlab implementations illustrate the devised methods
Problems, projects, and quizzes allow for self-evaluation
Includes theoretical and physical backgrounds of mathematical models
Finite element methods for approximating partial differential equations have reached a high degree of maturity, and are an indispensible tool in science and technology. This textbook aims at providing a thorough introduction to the construction, analysis, and implementation of finite element methods for model problems arising in continuum mechanics. The first part of the book discusses elementary properties of linear partial differential equations along with their basic numerical approximation, the functional-analytical framework for rigorously establishing existence of solutions, and the construction and analysis of basic finite element methods. The second part is devoted to the optimal adaptive approximation of singularities and the fast iterative solution of linear systems of equations arising from finite element discretizations. In the third part, the mathematical framework for analyzing and discretizing saddle-point problems is formulated, corresponding finte element methods are analyzed, and particular applications including incompressible elasticity, thin elastic objects, electromagnetism, and fluid mechanics are addressed. The book includes theoretical problems and practical projects for all chapters, and an introduction to the implementation of finite element methods.
Number of Illustrations and Tables
170 b/w illustrations
Topics
Numerical Analysis
Partial Differential Equations
Click Here to Buy the Hardcover from Springer
Click Here for More books