Healthcare It Decoded - Data Analytics
Published 5/2024
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 5.83 GB | Duration: 10h 3m
Published 5/2024
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 5.83 GB | Duration: 10h 3m
Using Excel Real Statistics Add-In
What you'll learn
Understand the End to End Data Analysis Workflow
Understand basics or Excel Real Statistics Addin
Apply different Machine Learning Algorithms using Excel Real Statistics AddIn
Demonstrate knowledge of applying Algorithms like Regression, KMeans using Healthcare Data
Requirements
No specific experience required.
Description
Are you Interested in learning how to apply some machine learning algorithms using Healthcare data and that too using Excel? Yes, then look no further. This course has been designed considering various parameters. I combine my experience of twenty two years in Health IT and twelve years in teaching the same to students of various backgrounds (Technical as well as Non-Technical).In this course you will learn the following:Understand the Patient Journey via the Revenue Cycle Management Workflow - Front, Middle and Back OfficeThe Data Visualization Journey - Moving from Source System to creating ReportsUnderstand Descriptive, Diagnostic, Predictive and Prescriptive Analytics At present I have explained below AlgorithmsSimple Linear Regression | Multiple Linear Regression | Weighted Linear Regression | Logistic Regression | Multinomial Regression | Ordinal Regression | KNN Classification | KMeans Clustering Classic Time Series | ARIMA | Some of the concepts key explained are listed below Homoscedasticity vs HeteroskedasticityBreusch-Pagan & White TestConfusion MatrixNominal vs Ordinal DataAUC & ROC CurveACF & PACF in Time SeriesDifferencing in Time Series Healthcare Datasets to create the algorithms.I have listed a the healthcare datasets used belowHealth Insurance DataCovid CasesAsthma DataObesity Member Enrollment Pharma SalesProstate CancerBreast CancerMaternal Health Risk**Course Image cover has been designed using assets from Freepik website.
Overview
Section 1: Introduction
Lecture 1 Introduction
Lecture 2 Master of The Mystic Arts
Lecture 3 Installing Real Statistics AddIn
Section 2: Hospital Patient Journey
Lecture 4 Appointment to Registration
Lecture 5 Insurance Eligibility
Lecture 6 Admissions & Financial Counseling
Lecture 7 Point of Care OPD
Lecture 8 Point of Care IPD
Lecture 9 Overview of Codes & Standards
Lecture 10 Medical Transcription & Coding
Lecture 11 Back Office
Section 3: Data Visualization & Analytics - The Journey
Lecture 12 Understanding the Source Systems
Lecture 13 Extract the Data
Lecture 14 Transform the Data
Lecture 15 The Logical Data Model
Lecture 16 Load the Data
Lecture 17 Insights & Foresights
Lecture 18 A Quick Recap
Lecture 19 The Lion and The Fox
Lecture 20 Descriptive Analytics - Patient Appointments Example
Lecture 21 Diagnostic Analytics - Patient Appointments Example
Lecture 22 Predictive Analytics - Patient Appointments Example
Lecture 23 Prescriptive Analytics - Patient Appointments Example
Lecture 24 Descriptive to Prescriptive Analytics - Additional Examples
Section 4: Some Basics Definitions
Lecture 25 AI vs ML vs DL
Lecture 26 Supervised Learning
Lecture 27 Unsupervised Learning
Lecture 28 Reinforcement Learning
Section 5: Others
Lecture 29 Solving #Name Error in Excel
Section 6: Linear Regression
Lecture 30 Linear Regression - Download the Data
Lecture 31 Regression & Eugenics
Lecture 32 Simple Linear Regression - The Logic
Lecture 33 Simple Linear Regression - Overview of Insurance Data
Lecture 34 Simple Linear Regression - Method 1
Lecture 35 Simple Linear Regression - Method 1 Prediction
Lecture 36 Simple Linear Regression - Method 2
Lecture 37 Simple Linear Regression - Method 2 Prediction
Lecture 38 Simple Linear Regression - Method 3
Lecture 39 Simple Linear Regression - Method 3 Prediction
Lecture 40 Multiple Linear Regression
Lecture 41 Multiple Linear Regression - Dummy Variables
Lecture 42 Multiple Linear Regression - Missing Values
Lecture 43 Multiple Linear Regression - Add Gender Dummy Variable
Lecture 44 Multiple Linear Regression - Add Smoker Dummy Variable
Lecture 45 Multiple Linear Regression - Add Region Dummy Variable
Lecture 46 Multiple Linear Regression - Excel Base Data
Lecture 47 Multiple Linear Regression - Applying MLR
Lecture 48 Multiple Linear Regression - Understanding the Output (Overall Fit)
Lecture 49 Multiple Linear Regression - Understanding the Output (Model Compraison)
Lecture 50 Multiple Linear Regression - Understanding the Output (ANOVA)
Lecture 51 Multiple Linear Regression - Understanding the Output (Intercept)
Lecture 52 Multiple Linear Regression - Understanding the Output (Multicollinearity)
Lecture 53 Multiple Linear Regression - Understanding the Output (p-value)
Lecture 54 Multiple Linear Regression - Understanding the Output (Predicted Value)
Lecture 55 Multiple Linear Regression - Iteration #2
Lecture 56 Age - Descriptive Statistics
Lecture 57 All Variables - Descriptive Statistics
Section 7: Weighted Linear Regression
Lecture 58 Weighted Linear Regression - Download the Data
Lecture 59 Homoscedasticity vs Heteroskedasticity
Lecture 60 Homoscedasticity Data Example
Lecture 61 Heteroskedasticity
Lecture 62 Heteroskedasticity Test: Breusch-Pagan & White Test
Lecture 63 Weighted Linear Regression - The Logic
Lecture 64 Weighted Linear Regression - Assigning Weights
Lecture 65 Weighted Linear Regression - Checking Heteroskedasticity
Lecture 66 Weighted Linear Regression - Method #1
Lecture 67 Weighted Linear Regression - Method #1 Prediction
Lecture 68 Weighted Linear Regression - Method #2
Section 8: Logistic Regression
Lecture 69 Logistic Regression - Download the Data
Lecture 70 Logistic Regression Intuition - My Yoga Story
Lecture 71 Logistic Regression Intuition - My Yoga Story Part 2
Lecture 72 Logistic Regression - The Confusion Matrix Part 1
Lecture 73 Logistic Regression - The Confusion Matrix Part 2
Lecture 74 Logistic Regression - The Confusion Matrix Part 3
Lecture 75 Logistic Regression - Prostate Cancer Data
Lecture 76 Logistic Regression - Descriptive Statistics
Lecture 77 Logistic Regression - Missing Values
Lecture 78 Logistic Regression - Pivot Table for Mean
Lecture 79 Logistic Regression - Imputing the data
Lecture 80 Logistic Regression - Applying the model
Lecture 81 Logistic Regression - ROC Curve
Lecture 82 Logistic Regression - OP Confusion Matrix
Lecture 83 Logistic Regression - OP Parameters
Lecture 84 Logistic Regression - Other Output
Lecture 85 Logistic Regression Predicted OP Part 1
Lecture 86 Logistic Regression Predicted OP Part 2
Lecture 87 Logistic Regression Predicted OP Part 3
Lecture 88 Logistic Regression Predicted OP Part 4
Lecture 89 Logistic Regression - Iteration 2
Section 9: Multinomial Logistic Regression
Lecture 90 Multinomial Logistic Regression - Download the Data
Lecture 91 Nominal vs Ordinal Data
Lecture 92 Multinomial Logistic Regression - Asthma Data
Lecture 93 Multinomial Logistic Regression - Data Cleaning Part 1
Lecture 94 Multinomial Logistic Regression - Data Cleaning Part 2
Lecture 95 Multinomial Logistic Regression - Data Cleaning Part 3
Lecture 96 Multinomial Logistic Regression - Data Cleaning Part 4
Lecture 97 Multinomial Logistic Regression - Applying using Real Statistics
Lecture 98 Multinomial Logistic Regression - OP Summary
Lecture 99 Multinomial Logistic Regression - Predicted Value
Lecture 100 Multinomial Logistic Regression - Primary Tumor Data (2nd Example)
Lecture 101 Multinomial Logistic Regression - Tumor Data Cleaning Part 1
Lecture 102 Multinomial Logistic Regression - Tumor Data Cleaning Part 2
Lecture 103 Multinomial Logistic Regression - Tumor Data Cleaning Part 3
Lecture 104 Multinomial Logistic Regression - Tumor Data Applying MLR
Lecture 105 Multinomial Logistic Regression - Tumor Data Predicting Values
Section 10: Ordinal Regression
Lecture 106 Ordinal Regression - Download the Data
Lecture 107 Ordinal Regression - Obesity Data
Lecture 108 Ordinal Regression - Cleaning Data Part 1
Lecture 109 Ordinal Regression - Cleaning Data Part 2
Lecture 110 Ordinal Regression - Execution Part 1
Lecture 111 Ordinal Regression - Why the Error?
Lecture 112 Ordinal Regression - Calculate BMI
Lecture 113 Ordinal Regression - Execution Part 2
Lecture 114 Ordinal Regression - Predicted Values
Lecture 115 Ordinal Regression - Confusion Matrix
Lecture 116 Ordinal Regression - Physical Activity Data
Lecture 117 Ordinal Regression - Execution Part 3
Lecture 118 Ordinal Regression - Predicted Values Part 2
Lecture 119 Ordinal Regression - Confusion Matrix Part 2
Section 11: KNN: k-nearest neighbors (Classification/Supervised Learning)
Lecture 120 KNN - Download the Data
Lecture 121 KNN - Sorting Hat Intution Part 1
Lecture 122 KNN - Sorting Hat Intuition Part 2
Lecture 123 KNN - Prostate Cancer Data
Lecture 124 KNN - Prostate Cancer Scatter Plot
Lecture 125 KNN - Prostate Cancer Applying the Logic - Part 1
Lecture 126 KNN - Prostate Cancer Applying the Logic - Part 2
Lecture 127 KNN - Breast Cancer Data
Lecture 128 KNN - Breast Cancer Data - Applying the Logic Part 1
Lecture 129 KNN - Breast Cancer Data - Applying the Logic Part 2
Lecture 130 KNN - Breast Cancer Data - Applying the Logic Part 3
Lecture 131 KNN - Breast Cancer Data - Simple Excel Formula
Section 12: K-Means (Clustering/Unsupervised Learning)
Lecture 132 K-Means - Download the Data
Lecture 133 First Impressions - The Intuition
Lecture 134 KMeans - Logic of Centroid
Lecture 135 KMeans - Elbow Method
Lecture 136 KMeans - Iris Dataset
Lecture 137 KMeans - Iris Data - Part 1
Lecture 138 KMeans - Iris Data - Part 2
Lecture 139 KMeans - Iris Data - Part 3
Lecture 140 KMeans - Maternal Health Data
Lecture 141 KMeans - Maternal Health Analysis - Part 1
Lecture 142 KMeans - Maternal Health Analysis - Part 2
Lecture 143 KMeans - Note of Caution
Lecture 144 Quick Ordinal Regression on Maternal Health Data
Section 13: Basic Time Series Forecasting
Lecture 145 Time Series - Download the Data
Lecture 146 Twister - The Intuition
Lecture 147 Classic Time Series Components
Lecture 148 TFS Example 01 - Using Seasonality
Lecture 149 TFS Example 02 - Using Seasonality + Trend Part 01
Lecture 150 TFS Example 02 - Using Seasonality + Trend Part 02
Lecture 151 TFS Example 02 - Using Seasonality + Trend Part 03
Lecture 152 TFS Example 03 - DE-Seasonalize Part 01
Lecture 153 TFS Example 03 - DE-Seasonalize Part 02
Lecture 154 TFS Example 03 - DE-Seasonalize Part 03
Section 14: ARIMA - Time Series Forecasting
Lecture 155 ARIMA - Download the Data
Lecture 156 ARIMA Intuition - Part 1: Summer of 92
Lecture 157 ARIMA Intuition - Part 1A: Summer of 92 (Article)
Lecture 158 ARIMA Basics - Part 2
Lecture 159 Simple Moving Average Basic Example
Lecture 160 Simple Moving Average Basic Example
Lecture 161 Simple Moving Average Covid Part 1
Lecture 162 Simple Moving Average Covid Part 2
Lecture 163 Simple Moving Average Covid Part 3
Lecture 164 ARIMA Understanding ACF PACF
Lecture 165 ARIMA Understanding ACF PACF (External Article)
Lecture 166 ARIMA Pharma Sales Calculate ACF & PACF
Lecture 167 ARIMA Pharma Sales Calculate Stationarity
Lecture 168 ARIMA Pharma Sales Apply ARIMA
Lecture 169 ARIMA Pharma Sales 2nd Example
Lecture 170 ARIMA Enrollment Data Part - 1
Lecture 171 ARIMA Enrollment Data Part - 2
Lecture 172 ARIMA Enrollment Data Part - 3 Simple Moving Average
Lecture 173 ARIMA Enrollment Data Part - 4 ARIMA (ACF PACF)
Lecture 174 ARIMA Enrollment Data Part - 5 Differencing
Lecture 175 ARIMA Enrollment Data Part - 6 Applying ARIMA
Section 15: Bonus Section
Lecture 176 Bonus Session - About Me
Beginners curious about create basic Analytics using Healthcare Data,Health IT Professionals,Healthcare/Hospital Management Professionals,Professionals from a Non-Technical background who want to understand basics of Analytics