Azure Data Engineering End-To-End Course (English)
Published 2/2025
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 34.38 GB | Duration: 60h 45m
Published 2/2025
MP4 | Video: h264, 1920x1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 34.38 GB | Duration: 60h 45m
Learn multiple tools in Azure data engineering stack through this course, all in one bundle!
What you'll learn
Understand end-to-end flow of Azure data engineering stack
Be ready to appear for interviews and crack them easily
Become independent to maximum level in handling tasks
End-to-end project covering entire lifecycle
Requirements
No pre-requistes for this course as it created from scratch for everyone for every single tool/technology making it easier to learn
Description
This course covers multiple tools and technologies needed to become an azure data engineer.The best part is there are no pre-requisites!Anyone can enroll and learn through this course.Our videos are simple to understand, to the point, short and yet covering everything you need.The content we are offering in this course is immense and requires full dedication, self -discipline and daily learning to ensure a completion and to make you independent skilled professional.We have trained 1000's of students and shaped their career and you could be the next one, join us by enrolling in the course and benefit immensely through our course offering.You will get best of both quality and quantity!In this course you will learn below tools and technologies from scratch:SQL : Learn structured query language in Microsoft SQL Server.Data warehousing : Learn fundamental concepts of data warehousing.Azure cloud : Learn about cloud computing, benefits and different services.Azure Data factory: Learn ETL on azure cloud, code free.Python programming: Learn programming in python with simple way.Big data fundamentals: Master the big data concepts to build strong foundation.Databricks: Learn databricks, the leading data platform.PySpark: Learn big data processing in pyspark on databricks.Delta lake: Learn the delta lake features.Spark structured streamingAzure devopsEnd-to-end project (Release in progress)This course is for everyone from beginner to architect level!
Overview
Section 1: Introduction to Azure Data Engineering
Lecture 1 Introduction
Section 2: SQL
Lecture 2 001. Introduction to SQL
Lecture 3 002. SQL Server Installation
Lecture 4 003. Create And Drop Database
Lecture 5 004. System Databases
Lecture 6 Create and Drop Tables
Lecture 7 006. Insert Data In Table
Lecture 8 007. Select
Lecture 9 008. InstallAdventureWorksSampleDB
Lecture 10 009. GetUniqueValues
Lecture 11 010. Sort Data
Lecture 12 011. Comments
Lecture 13 012. Filter Data
Lecture 14 013.Filter With Wild Characters
Lecture 15 014. Aggregate Function
Lecture 16 015. Grouping Rows
Lecture 17 016. Select..Into
Lecture 18 017. Create Table With Primary Key
Lecture 19 018. Create Table With NOT NULL Constraint
Lecture 20 019. Create Table With Unique Constraint
Lecture 21 020. Create Table With Check Constraint
Lecture 22 021. Create Table With Default Constraint
Lecture 23 022. Create Table With AutoIncrement
Lecture 24 023.Update Rows In Table
Lecture 25 024. Delete Rows From Table
Lecture 26 025. String Functions - Part 1
Lecture 27 026. String Functions - Part 2
Lecture 28 027. Scenario - Combine Names
Lecture 29 028. Scenario - Extract First And Last Names
Lecture 30 029. Date Time Functions - Part 1
Lecture 31 030. Date Time Functions - Part 2
Lecture 32 031. Date Time Functions - Part 3
Lecture 33 032. Data Type - Part 1 - Integers
Lecture 34 033. Data Types - Part 2 - Approximate Numeric
Lecture 35 034. Data Types - Part 3 - Date Time
Lecture 36 035. Data Types - Part 4 - Strings
Lecture 37 036. Data Types - Part 5 - Unique identifier
Lecture 38 037. Data Types - Part 6 - bit
Lecture 39 038. Data Type Conversion
Lecture 40 039. Joins Part 1 – Introduction to joins
Lecture 41 040. Joins Part 2- Using Joins
Lecture 42 041. Joins Part 3- Join 3 tables
Lecture 43 042. Joins Part 4- Using Expressions
Lecture 44 043. Joins Part 4- Outer Joins
Lecture 45 044. Scenario - Joins Part 6 – Self Join
Lecture 46 045. Fact And Dimensions
Lecture 47 046. IIF Function
Lecture 48 047. CASE
Lecture 49 048. IIF & CASE multiple conditions
Lecture 50 049. Scenario - Custom sorting
Lecture 51 50. UNION & UNION ALL
Lecture 52 051. INTERSECT
Lecture 53 052. EXCEPT
Lecture 54 053. Foreign key constraint
Lecture 55 054. Subquery - PART 1
Lecture 56 055. Subquery - PART2 -IN & NOT IN
Lecture 57 056. Subquery - PART3 - Update
Lecture 58 057.Subquery - PART 4-Derived Table
Lecture 59 058. Subquery - PART 5 - EXISTS, Correlated subquery
Lecture 60 059. Scenario - Subquery - PART 6 - Get contribution yearwise
Lecture 61 060. HAVING Clause
Lecture 62 061. TOP Clause
Lecture 63 062. Scenario - Get TOP & BOTTOM Products
Lecture 64 063. Window Functions-PART1 - ROW_NUMBER
Lecture 65 064. Window Functions - PART 2 - RANK & DENSE_RANK
Lecture 66 065. Window Functions - PART 3-LAG & LEAD
Lecture 67 066. Window Functions - PART4 - FIRST_VALUE & LAST_VALUE
Lecture 68 067. SQL Classification
Lecture 69 068. ALTER TABLE - PART 1 - Columns
Lecture 70 069. ALTER TABLE - PART 2- Constraints
Lecture 71 070. OFFSET
Lecture 72 071. COALESCE Function
Lecture 73 072. MERGE
Lecture 74 073. SCHEMA
Lecture 75 074. GROUP BY WITH ROLLUP
Lecture 76 075. GROUP BY WITH CUBE
Lecture 77 076. PIVOT
Lecture 78 077. UNPIVOT
Lecture 79 078. VIEWS
Lecture 80 079. Common Table Expression - Part1 - Introduction
Lecture 81 080. Common TableExpression - PART 2 - MultiPart
Lecture 82 081. Common Table Expression - PART 3 - Recursion
Lecture 83 082. Variables
Lecture 84 083. IF..ELSE
Lecture 85 084. WHILE LOOP
Lecture 86 085. Temp Tables
Lecture 87 086. Stored Procedures
Lecture 88 087. Converting a table to JSON
Lecture 89 088. Creating Nested JSON Output
Lecture 90 089. Output Clause
Lecture 91 090. Slowly Changing Dimensions
Section 3: SQL Scenarios
Lecture 92 1. Find Average
Lecture 93 2. Joins Challenge
Lecture 94 3. Identify and delete duolicate rows
Lecture 95 4. Custom Merging
Lecture 96 005.MissingData-FindMissingDepartments
Lecture 97 006.Find2ndLargestSalary
Lecture 98 7. 2nd Largest Salary In Each Department
Lecture 99 8. RowNumbering
Lecture 100 9. Find Alternate Rows
Lecture 101 10. Palindrome
Lecture 102 11. FindDuplicateEmails
Lecture 103 12. UpdateCorrectGender
Lecture 104 13. Transform Student Info
Lecture 105 14. Defect Classification
Lecture 106 015. Daily Running Total
Lecture 107 16. MTD Total
Lecture 108 17. QTD Total
Lecture 109 18. YTD Total
Lecture 110 19. Previous Year Sales And YOY Growth
Lecture 111 20. 3 month moving sum
Section 4: 4. Data warehousing
Lecture 112 1.Introduction to DataWarehousing
Lecture 113 2. Data Loads
Lecture 114 3. Storage Layout Models
Lecture 115 4. Robin Round Distribution
Lecture 116 5. Hash Distribution
Lecture 117 6.ACID Properties
Lecture 118 7. Normalization
Section 5: 5. Azure
Lecture 119 1. Cloud Computing
Lecture 120 2. Cloud Providers
Lecture 121 3. Azure Introduction
Lecture 122 4. Create Azure Trial Account
Lecture 123 5. Getting Started With Azure
Lecture 124 6. Create Data Lake
Lecture 125 7. Create Azure SQL Server And Database
Lecture 126 8. CreateDataFactory
Lecture 127 9. Upgrade To Pay-as-you-go
Section 6: 6.Azure Data Factory
Lecture 128 1. Introduction
Lecture 129 2. Copy Data Within Datalake
Lecture 130 3. Copy Entire Folder Specific Files
Lecture 131 4. Copy data from ADLS to SQLDB & vice versa
Lecture 132 5. Copy Data Additional Columns
Lecture 133 6. Set Variable Activity
Lecture 134 7. Copy files in timeframe
Lecture 135 8. Get MetaData Activity
Lecture 136 9. For Each Activity
Lecture 137 10. Copy Each File to New table
Lecture 138 11. Truncate & load
Lecture 139 12. Copy data with upsert
Lecture 140 13. Append Variable Activity
Lecture 141 14. Using SQL Queries In Copy Data Activity
Lecture 142 15. Column Mapping In Copy Data Activity
Lecture 143 16. Delete Activity
Lecture 144 17. Copy Data With Stored Procedure
Lecture 145 18. Stored Procedure Activity
Lecture 146 19. Lookup Activity
Lecture 147 20. Filter Activity
Lecture 148 21. IF Activity
Lecture 149 22. Switch Activity
Lecture 150 23. Script Activity
Lecture 151 24. Validation Activity
Lecture 152 25. Convert CSV to JSON
Lecture 153 26. Copy JSON to SQL DB
Lecture 154 27. Execute Pipeline Activity
Lecture 155 28. Copy Data If File Exists
Lecture 156 29. Parameters Vs Variables
Lecture 157 30. Delete Blank Files
Lecture 158 31. Copy Header Less CSV
Lecture 159 32. Retry Logic
Lecture 160 33. Copy Behavior
Lecture 161 34. Max Rows Per File
Lecture 162 35. Split Data Single Criteria
Lecture 163 36. Split Data Multiple Criteria
Lecture 164 37. Consolidate Data From Multiple Files
Lecture 165 38. Consolidate Data From Mutiple Folders
Lecture 166 39. Copy Data Custom Mappings SingleTable
Lecture 167 40. Copy Data Custom Mappings - MultipleTables
Lecture 168 41. Copy Data Pipe Character
Lecture 169 42. Copy Data Quote Character
Lecture 170 43. Introduction To DataFlows
Lecture 171 44. Select Transformation
Lecture 172 45. SortTransformation
Lecture 173 46. Filter Transformation
Lecture 174 47. Derived Column Transformation
Lecture 175 48. Conditional Split Transformation
Lecture 176 49. Cast Transformation
Lecture 177 50. Surrogate Key Transformation
Lecture 178 51.Aggregate Transformation
Lecture 179 52. Pivot Transformation
Lecture 180 53. Unpivot Transformation
Lecture 181 54.Rank Transformation
Lecture 182 55. Window Transformation
Lecture 183 56. Union Transformation
Lecture 184 57. Lookup Transformation
Lecture 185 58. Join Transformation
Lecture 186 59. Exists Transformation
Lecture 187 60. Flatten Transformation
Lecture 188 61. Parse Transformation
Lecture 189 62. Stringify Transformation
Lecture 190 65. Integration Runtime
Lecture 191 66. Install Self Hosted Integration Runtime
Lecture 192 67.Copy Data From Local To ADLS
Lecture 193 68. Copy Data From Local to Azure SQL DB
Lecture 194 69. Copy Data Local SQL db to Azure SQL db
Lecture 195 070. Copy Multiple Tables From Local sql DB to Azure sql DB
Lecture 196 071. Using Key Vault
Lecture 197 072. Schedule Trigger
Section 7: 7.Introduction To Databricks
Lecture 198 1. Introduction To Databricks
Lecture 199 2. Community Edition Sign Up
Lecture 200 3. Databricks Platform Overview
Section 8: 8.Python Programming
Lecture 201 1. Introduction And Installation
Lecture 202 2. print
Lecture 203 3. Variables
Lecture 204 4. Concatenate
Lecture 205 5. Interpolation
Lecture 206 6. If..else
Lecture 207 7. Input
Lecture 208 8. IF..ELIF..ELSE
Lecture 209 9. For..Loop
Lecture 210 10. While..Loop
Lecture 211 11. Break&Continue
Lecture 212 12. Lists-Part1-IntroductionAndIndexing
Lecture 213 13. Lists-Part2-Len,Existence&Loop
Lecture 214 14. Lists-Part 3 – Add&RemoveItems
Lecture 215 15. Lists-Part4-Count,Copy,Reverse&Sort
Lecture 216 16. Lists-Part5-UpdatingLists
Lecture 217 17. Set
Lecture 218 18. Tuple
Lecture 219 19. Dictionary
Lecture 220 20. Comments
Lecture 221 21. StringOperations-Part1
Lecture 222 22. StringOperations-Part2
Lecture 223 23.StringOperations-Part3
Lecture 224 24. ListComprehensions
Lecture 225 25. dir
Lecture 226 26. DateTime-Part1-datetimeModule
Lecture 227 27. DateTime-Part2-timedelta×tamp
Lecture 228 28. DateTime-Part3-monthdeltaModule
Lecture 229 29. DateTime-Part4-relativedeltaModule
Lecture 230 30.DateTime-Part5-Formatting
Lecture 231 31.ExceptionHandling
Lecture 232 32. None
Lecture 233 33. Random
Lecture 234 34. Functions-Part1-Introduction
Lecture 235 35. Functions-Part2-ScopeOfVariable
Lecture 236 36. Functions-Part3-Arguments
Lecture 237 37.Functions-Part4-DocStrings
Lecture 238 38. Lambda
Lecture 239 39. Map
Lecture 240 40. Reduce
Lecture 241 41. Recursion
Lecture 242 42. Generators
Lecture 243 43. Decorators
Section 9: 9. Big Data Fundamentals
Lecture 244 1. IntroductionToBigData
Lecture 245 2. Evolution Of Big Data
Lecture 246 3. Distributed Computing
Lecture 247 4. Features
Lecture 248 5. Hadoop Ecosystem
Lecture 249 6. TypesOfProcessing
Section 10: 10.Databricks & PySpark
Lecture 250 1. IntroductionToDatabricksAndPyspark
Lecture 251 2. Introduction To Apache Spark
Lecture 252 3. SparkComponents And API
Lecture 253 4. Spark Architecture
Lecture 254 5. RDD
Lecture 255 6. Create RDD from List
Lecture 256 7. Control Partitions In RDD
Lecture 257 8. CreateRDDfromTextfile
Lecture 258 9. Transformations On RDD
Lecture 259 10. Lineage Graph
Lecture 260 11. Understanding DAG fundamentals
Lecture 261 12. Mapreduce Working
Lecture 262 13. ReduceByKey Vs ReduceByKey Locally
Lecture 263 14. GroupByKey
Lecture 264 15. Filter Transformation On RDD
Lecture 265 16. SortBy&SortByKeyTransformationsOnRDD
Lecture 266 017. Extract Top Bottom From RDD
Lecture 267 18. Save RDD as Textfile
Lecture 268 19. Coalesce And Repartition On RDD
Lecture 269 20. IntroductionToAccumulators
Lecture 270 21. Implementing Accumulators
Lecture 271 22. Broadcast Variables
Lecture 272 23. Introduction To Dataframes
Lecture 273 24. ReadCSVInDataframe
Lecture 274 25. DataFrameInsights
Lecture 275 26. SelectColumnsFromDataFrame
Lecture 276 27. Add Modify Columns In DataFrame
Lecture 277 28. Drop Columns In DataFrame
Lecture 278 29. RenameColumnsInDataFrame
Lecture 279 30. SortColumnsInDataFrame
Lecture 280 31. FilterDataInDataFrame
Lecture 281 32. RemoveDuplicatesFromDataFrame
Lecture 282 33. CombineDataFrames
Lecture 283 34. PatternBasedFiltersInDataframe
Lecture 284 35. AddColumnOnBasisOfConditionInPyspark
Lecture 285 36. CaseConversionInDataFrame
Lecture 286 37. AggregationsOnDataFrame
Lecture 287 38. AggregationsWithGroupBy
Lecture 288 39.Pivot&UnpivotOnDataFrame
Lecture 289 40. WindowFunctions
Lecture 290 41. FillNullValuesInDataFrame
Lecture 291 42. ReadCSVoptions
Lecture 292 43. ImposeSchemaOnDataFrame
Lecture 293 44. WriteModesInDataFrame
Lecture 294 45. DateFunctions
Lecture 295 46. ConvertRddtoDFandViceVersa
Lecture 296 47. Explode
Lecture 297 48. WorkingWithArraytypeColumn
Lecture 298 49. dbutils
Lecture 299 50. AccessADLSgen2UsingAccessKey
Lecture 300 51. SignUpForAzureDatabricks
Lecture 301 52. Widgets
Lecture 302 53. CallingOtherNotebooks
Lecture 303 54. ReadJsonFiles
Lecture 304 55. ReadMultipleFilesAndGetFileNames
Lecture 305 56. ParquetFileFormat
Lecture 306 57. AccessADLSusingSAStoken
Lecture 307 58. AccessADLSusingOAUTH
Lecture 308 59. Read&WriteParquetFiles
Lecture 309 60. DeltaFormat
Lecture 310 61. CreateTempViews
Lecture 311 62. CreateManagedAndUnManagedTables
Lecture 312 63. Partitioning
Lecture 313 64. Bucketing
Lecture 314 65. ControlNumberOfRecordsWhileWriting
Lecture 315 66. MaxPartitionBytes
Lecture 316 67. SparkQueryExecutionPlans
Lecture 317 68. Joins
Lecture 318 69. SparkExecutionPlansForTransformations
Lecture 319 70. BroadCastHashJoinAlgorithm
Lecture 320 71. SortMergeJoinAlgorithm
Lecture 321 72. ShuffleHashJoinAlgorithm
Lecture 322 73. SortMergeBucketJoin
Lecture 323 74. JoinHints
Lecture 324 75. SparkSQL
Lecture 325 76. SparkMemoryManagement
Lecture 326 77. GarbageCollection
Lecture 327 78. CPUTerminologies
Lecture 328 79. DatabricksCompute&Clusters
Lecture 329 80. ClusterManager
Lecture 330 81. ResourceAllocation
Lecture 331 82. DynamicAllocation
Lecture 332 83. SerializationAndDeserialization
Lecture 333 84. CacheAndPersist
Lecture 334 85. HashFunctions
Section 11: 11.DeltaLake & Lakehouse
Lecture 335 1.HistoryOfDataArchitectures
Lecture 336 2. IntroductionToDeltaLake
Lecture 337 3. ReadAndWriteDeltaFormat
Lecture 338 4. UnderstandingDeltaLog
Lecture 339 5. VersionHistoryAndTimeTravel
Lecture 340 6. CheckPointing
Lecture 341 7. CreateDeltaTable
Lecture 342 8. GeneratedColumns
Lecture 343 9. CreatePartitionedTable
Lecture 344 10. SchemaEvolution
Lecture 345 11. CopyInto
Lecture 346 12. Merge
Lecture 347 13. ColumnStatistics
Lecture 348 14.Optimize-Vaccum-Zorder
Lecture 349 15. LiquidClustering
Lecture 350 16. ChangeDataFeed
Lecture 351 17. ReorgTable
Lecture 352 18. DeletionVectors
Lecture 353 19.SCD-Type 1
Lecture 354 20.SCD-Type 2
Section 12: 12.Databricks
Lecture 355 1.HiveMetaStore
Lecture 356 2. IntroductionToUnityCatalog
Lecture 357 3. SettingUpUnityCatalog
Lecture 358 4.CreateCatalog, Schema & Table
Lecture 359 5. Autoloader
Section 13: 13.Spark Structured Streaming
Lecture 360 1.SparkStructuredSteaming-Introduction
Lecture 361 2. ReadStream
Lecture 362 3. WriteStream
Lecture 363 4. OutputModes
Lecture 364 5.Sources&Sinks
Lecture 365 6. Triggers
Lecture 366 7. Joins
Lecture 367 8. Stateful Vs Stateless
Lecture 368 9. WindowOperations
Section 14: 14. Azure synapse analytics
Lecture 369 1.IntroductionToAzureSynapseAnalytics
Lecture 370 2.SQL Pools
Lecture 371 3. DedicatedSQLPool
Lecture 372 4. ServerlessSQLPool
Lecture 373 5. DistributionTypes
Lecture 374 6.ProvisionAzureSynapseAnalytics
Lecture 375 7. WorkingWithServerlessSQLPool
Section 15: 15. End-to-end project
Lecture 376 1. Introduction
Lecture 377 2. UnderstandingRequirements
Lecture 378 3. PurchaseDataModel
Lecture 379 4. SalesModel
Lecture 380 5. HRModel
Lecture 381 6. ResourceSetUp
Lecture 382 7. GettingStartedWithAzureDevops
Lecture 383 8. UnderstandingDataSource
Lecture 384 9. GettingDatabricksReady
Lecture 385 10. DevelopingPurchaseNotebooks
Lecture 386 11. DevelopingPurchaseModel-Part2
Lecture 387 12. TaskPlanning
Lecture 388 13.DevelopingPurchaseBronzeNotebooks
Lecture 389 14.FirstDemo
Lecture 390 15.DevelopingSilverNotebooks-Part1
Lecture 391 16.DevelopingSilverAndOtherNotebooks
Lecture 392 17.DevelopingOtherAndSilverNotebooks-Part2
Lecture 393 18. CreatingRawAndBronzeSalesNotebooks
Lecture 394 19.CreatingSalesSilverNotebooks-Part1
Lecture 395 020.CreatingSalesSilverNotebookPart2
Lecture 396 021.CreatingHrModelNotebooks
Lecture 397 22. DevelopingDatabricksWorkflows
Anyone can enroll this course from beginner, intermediate to architect level!,Anyone looking to transition into azure data engineering or existing data engineers looking to not just enhance their skillset but also learn in depth.