Tags
Language
Tags
March 2025
Su Mo Tu We Th Fr Sa
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
SpicyMags.xyz

Elements Of Green Function And Density Functional Theory

Posted By: hill0
Elements Of Green Function And Density Functional Theory

Elements Of Green Function And Density Functional Theory
English | 2025 | ISBN: 9819805791 | 663 Pages | PDF (True) | 16 MB

If there were no Coulomb interaction among electrons, it would be relatively straightforward to solve the many-electron Schrödinger equation. It is, however, precisely this interaction that is at the heart of numerous fascinating phenomena in condensed matter physics such as superconductivity, Kondo physics, magnetism, etc. Due to the large number of electrons in a material being of the order of Avogadro's number, it is at present ― and perhaps in the foreseeable future ― not feasible or even desirable to solve the Schrödinger equation to obtain the many-electron wavefunction. Fortunately, a large number of important physical properties can be calculated without explicit knowledge of the wavefunction.Two of the most important formalisms for dealing with the many-electron problem which avoid a direct use of the many-electron wavefunction are the Green function and the density functional theory. Within the Kohn-Sham scheme the latter is used to calculate ground-state properties whereas the former for excitation spectra. The book presents the fundamentals of these two theories in detail with essential many-body tools, such as the occupation number representation and Grassmann algebra developed from scratch. Prior knowledge of many-body theory is not a prerequisite so that it is readable for final-year undergraduates and graduate students in physics and chemistry as well as researchers in the field of electronic structure and many-body theory. The book includes in the last chapter an exposition of a density-functional path for determining the Green function, a new formalism recently proposed by the author. The book should be a valuable companion for those embarking in the field of many-electron physics.