Tags
Language
Tags
January 2025
Su Mo Tu We Th Fr Sa
29 30 31 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1

Network Classification for Traffic Management : Anomaly Detection, Feature Selection, Clustering and Classification

Posted By: readerXXI
Network Classification for Traffic Management : Anomaly Detection, Feature Selection, Clustering and Classification

Network Classification for Traffic Management :
Anomaly Detection, Feature Selection, Clustering and Classification

by Zahir Tari, Adil Fahad
English | 2020 | ISBN: 1785619217 | 291 Pages | PDF | 6.16 MB

With the massive increase of data and traffic on the Internet within the 5G, IoT and smart cities frameworks, current network classification and analysis techniques are falling short. Novel approaches using machine learning algorithms are needed to cope with and manage real-world network traffic, including supervised, semi-supervised, and unsupervised classification techniques. Accurate and effective classification of network traffic will lead to better quality of service and more secure and manageable networks.

This authored book investigates network traffic classification solutions by proposing transport-layer methods to achieve better run and operated enterprise-scale networks. The authors explore novel methods for enhancing network statistics at the transport layer, helping to identify optimal feature selection through a global optimization approach and providing automatic labelling for raw traffic through a SemTra framework to maintain provable privacy on information disclosure properties.


If you want to support my blog, then you can buy a premium account through any of my files (i.e. on the download page of my book). In this case, I get a percent of sale and can continue to delight you with new books!