Tags
Language
Tags
July 2025
Su Mo Tu We Th Fr Sa
29 30 1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 1 2
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    https://sophisticatedspectra.com/article/drosia-serenity-a-modern-oasis-in-the-heart-of-larnaca.2521391.html

    DROSIA SERENITY
    A Premium Residential Project in the Heart of Drosia, Larnaca

    ONLY TWO FLATS REMAIN!

    Modern and impressive architectural design with high-quality finishes Spacious 2-bedroom apartments with two verandas and smart layouts Penthouse units with private rooftop gardens of up to 63 m² Private covered parking for each apartment Exceptionally quiet location just 5–8 minutes from the marina, Finikoudes Beach, Metropolis Mall, and city center Quick access to all major routes and the highway Boutique-style building with only 8 apartments High-spec technical features including A/C provisions, solar water heater, and photovoltaic system setup.
    Drosia Serenity is not only an architectural gem but also a highly attractive investment opportunity. Located in the desirable residential area of Drosia, Larnaca, this modern development offers 5–7% annual rental yield, making it an ideal choice for investors seeking stable and lucrative returns in Cyprus' dynamic real estate market. Feel free to check the location on Google Maps.
    Whether for living or investment, this is a rare opportunity in a strategic and desirable location.

    Biodegradable Polymeric Nanocomposites: Advances in Biomedical Applications

    Posted By: ksveta6
    Biodegradable Polymeric Nanocomposites: Advances in Biomedical Applications

    Biodegradable Polymeric Nanocomposites: Advances in Biomedical Applications by Dilip Depan
    2015 | ISBN: 1482260514 | English | 269 pages | PDF | 9 MB

    How Can Polymers Constructed From Living Organisms Help Eliminate the Disposal Issue?
    A unique category of materials called biodegradable polymers could help remedy a growing environmental concern. Biodegradable Polymeric Nanocomposites: Advances in Biomedical Applications considers the potential of biodegradable polymers for use in biomedical applications that include drug delivery, biosensors, and tissue engineering. Since biomaterials perform on a time-limited function and are designed to disappear from the body after use, the development of biopolymers could greatly reduce and eliminate the need for plastic products, most specifically those used in biomedical applications.

    Highlights Biomaterials and the Design and Application of Biomaterials

    Utilizing expert research contributors from around the world, this book considers the benefits and limitations of a variety of biomaterials, such as biopolymers, ceramics, biodegradable nanocomposites, and natural products–based biomaterials. It explores the bio-nano-interface; the interaction between nanoparticles and biomaterials, explains the basic concepts and methods of biodegradable nanocomposites (BNCs), and highlights recent developments in polymer-based bionanocomposites. The book provides an overview of degradation properties and the mechanical properties of biodegradable polymers. It also breaks down the mechanical properties and biocompatibility of starch-based polymers, and outlines distinct advantages (biodegradability and nontoxicity) that make them suitable as medical polymer materials. In addition, it highlights the FDA-approved biodegradable polyester family and focuses on the state-of-the-art recent advancements in drug-delivery devices.

    Biodegradable Polymeric Nanocomposites: Advances in Biomedical Applications provides current knowledge on biopolymers, examines recent developments and trends, and considers future applications of polymers. Featuring the work of highly-qualified international researchers, this book addresses applications relevant to polymer and material science, as well as material, biomedical, and chemical engineering, and is of specific interest to polymer science engineers.