Tags
Language
Tags
February 2025
Su Mo Tu We Th Fr Sa
26 27 28 29 30 31 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 1
Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
SpicyMags.xyz

Multi-Label Dimensionality Reduction (repost)

Posted By: libr
Multi-Label Dimensionality Reduction (repost)

Multi-Label Dimensionality Reduction by Liang Sun, Shuiwang Ji and Jieping Ye
English | 2013 | ISBN: 1439806152 | 208 pages | PDF | 3 MB

Similar to other data mining and machine learning tasks, multi-label learning suffers from dimensionality. An effective way to mitigate this problem is through dimensionality reduction, which extracts a small number of features by removing irrelevant, redundant, and noisy information.
The data mining and machine learning literature currently lacks a unified treatment of multi-label dimensionality reduction that incorporates both algorithmic developments and applications.
Addressing this shortfall, Multi-Label Dimensionality Reduction covers the methodological developments, theoretical properties, computational aspects, and applications of many multi-label dimensionality reduction algorithms. It explores numerous research questions, including:
• How to fully exploit label correlations for effective dimensionality reduction
• How to scale dimensionality reduction algorithms to large-scale problems
• How to effectively combine dimensionality reduction with classification
• How to derive sparse dimensionality reduction algorithms to enhance model interpretability
• How to perform multi-label dimensionality reduction effectively in practical applications
The authors emphasize their extensive work on dimensionality reduction for multi-label learning. Using a case study of Drosophila gene expression pattern image annotation, they demonstrate how to apply multi-label dimensionality reduction algorithms to solve real-world problems. A supplementary website provides a MATLAB® package for implementing popular dimensionality reduction algorithms.