Multidimensional NMR Methods for the Solution State (EMR Books) by Gareth A. Morris, James W. Emsley
English | 2010 | ISBN: 0470770759 | 580 Pages | PDF | 10 MB
English | 2010 | ISBN: 0470770759 | 580 Pages | PDF | 10 MB
The content of this volume has been added to eMagRes (formerly Encyclopedia of Magnetic Resonance) - the ultimate online resource for NMR and MRI.
The literature of multidimensional NMR began with the publication of three papers in 1975, then nine in 1976 and fifteen in 1977, and now contains many tens of thousands of papers. Any attempt to survey the field must therefore necessarily be very selective, not to say partial. In assembling this handbook, the Editors have sought to provide both the new researcher and the established scientist with a solid foundation for the understanding of multidimensional NMR, a representative if inevitably limited survey of its applications, an authoritative account of classic techniques such as COSY, NOESY and TOSCY, and an account of the latest progress in the development of multidimensional techniques.
This handbook is structured in four parts. The first opens with an historical introduction to, and a brief account of, the practicalities and applications of multidimensional NMR methods, followed by a definitive survey of their conceptual basis and a series of articles setting out the generic principles of methods for acquiring and processing multidimensional NMR data. In the second part, the main families of multidimensional techniques, arranged in approximate order of increasing complexity, are described in detail, from simple J-resolved spectroscopy through to the powerful heteronuclear 3D and 4D methods that now dominate the study of structural biology in solution. The third part offers and illustrative selection from the very wide range of applications of multidimensional NMR methods, including some of the most recent developments in protein NMR. Finally, the fourth part introduces the idea of multidimensional spectra containing non-frequency dimensions, in which properties such as diffusion and relaxation are correlated.
My nickname - interes