Tags
Language
Tags
January 2025
Su Mo Tu We Th Fr Sa
29 30 31 1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31 1
Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
SpicyMags.xyz

Heavy-Tail Phenomena: Probabilistic and Statistical Modeling (Repost)

Posted By: AvaxGenius
Heavy-Tail Phenomena: Probabilistic and Statistical Modeling (Repost)

Heavy-Tail Phenomena: Probabilistic and Statistical Modeling by Sidney I. Resnick
English | PDF | 2007 | 412 Pages | ISBN : 0387242724 | 4.5 MB

This comprehensive text gives an interesting and useful blend of the mathematical, probabilistic and statistical tools used in heavy-tail analysis. Heavy tails are characteristic of phenomena where there is a significant probability of a single huge value impacting system behavior. Record-breaking insurance losses, financial returns, sizes of files stored on a server, transmission rates of files are all examples of heavy-tailed phenomena.
Key features:

Unique text devoted to heavy-tails.

The treatment of heavy tails is largely dimensionless.

The text gives attention to both probability modeling and statistical methods for fitting models. Most other books focus on one or the other but not both.

The book emphasizes the broad applicability of heavy-tails to the fields of finance (e.g., value-at- risk), data networks, insurance.

The presentation is clear, efficient and coherent and, balances theory and data analysis to show the applicability and limitations of certain methods.

Several chapters examine in detail the mathematical properties of the methodologies as well as their implementation in the Splus or R statistical languages.

The exposition is driven by numerous examples and exercises.

Prerequisites for the reader include a prior course in stochastic processes and probability, some statistical background, some familiarity with time series analysis, and ability to use (or at least to learn) a statistics package such as R or Splus. This work will serve second-year graduate students and researchers in the areas of operations research, statistics, applied mathematics, electrical engineering, financial engineering, networking and economics.
Without You And Your Support We Can’t Continue
Thanks For Buying Premium From My Links For Support