Machine Learning Algorithms in Depth
Author: Vadim Smolyakov
Narrator: n/a
English | 2025 | ISBN: 9781633439214 | MP3@64 kbps | Duration: 5h 51m | 509 MB
Author: Vadim Smolyakov
Narrator: n/a
English | 2025 | ISBN: 9781633439214 | MP3@64 kbps | Duration: 5h 51m | 509 MB
Learn how machine learning algorithms work from the ground up so you can effectively troubleshoot your models and improve their performance.
Fully understanding how machine learning algorithms function is essential for any serious ML engineer. In Machine Learning Algorithms in Depth you’ll explore practical implementations of dozens of ML algorithms including:
Monte Carlo Stock Price Simulation
Image Denoising using Mean-Field Variational Inference
EM algorithm for Hidden Markov Models
Imbalanced Learning, Active Learning and Ensemble Learning
Bayesian Optimization for Hyperparameter Tuning
Dirichlet Process K-Means for Clustering Applications
Stock Clusters based on Inverse Covariance Estimation
Energy Minimization using Simulated Annealing
Image Search based on ResNet Convolutional Neural Network
Anomaly Detection in Time-Series using Variational Autoencoders
Machine Learning Algorithms in Depth dives into the design and underlying principles of some of the most exciting machine learning (ML) algorithms in the world today. With a particular emphasis on probabilistic algorithms, you’ll learn the fundamentals of Bayesian inference and deep learning. You’ll also explore the core data structures and algorithmic paradigms for machine learning. Each algorithm is fully explored with both math and practical implementations so you can see how they work and how they’re put into action.