Tags
Language
Tags
June 2025
Su Mo Tu We Th Fr Sa
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 1 2 3 4 5
    Attention❗ To save your time, in order to download anything on this site, you must be registered 👉 HERE. If you do not have a registration yet, it is better to do it right away. ✌

    ( • )( • ) ( ͡⚆ ͜ʖ ͡⚆ ) (‿ˠ‿)
    SpicyMags.xyz

    Vectorization: A Practical Guide to Efficient Implementations of Machine Learning Algorithms

    Posted By: Free butterfly
    Vectorization: A Practical Guide to Efficient Implementations of Machine Learning Algorithms

    Vectorization: A Practical Guide to Efficient Implementations of Machine Learning Algorithms by Edward DongBo Cui
    English | December 24, 2024 | ISBN: 1394272944 | 448 pages | MOBI | 27 Mb

    Enables readers to develop foundational and advanced vectorization skills for scalable data science and machine learning and address real-world problems
    Offering insights across various domains such as computer vision and natural language processing, Vectorization covers the fundamental topics of vectorization including array and tensor operations, data wrangling, and batch processing. This book illustrates how the principles discussed lead to successful outcomes in machine learning projects, serving as concrete examples for the theories explained, with each chapter including practical case studies and code implementations using NumPy, TensorFlow, and PyTorch.
    Each chapter has one or two types of contents: either an introduction/comparison of the specific operations in the numerical libraries (illustrated as tables) and/or case study examples that apply the concepts introduced to solve a practical problem (as code blocks and figures). Readers can approach the knowledge presented by reading the text description, running the code blocks, or examining the figures.
    Written by the developer of the first recommendation system on the Peacock streaming platform, Vectorization explores sample topics including:
    • Basic tensor operations and the art of tensor indexing, elucidating how to access individual or subsets of tensor elements
    • Vectorization in tensor multiplications and common linear algebraic routines, which form the backbone of many machine learning algorithms
    • Masking and padding, concepts which come into play when handling data of non-uniform sizes, and string processing techniques for natural language processing (NLP)
    • Sparse matrices and their data structures and integral operations, and ragged or jagged tensors and the nuances of processing them
    From the essentials of vectorization to the subtleties of advanced data structures, Vectorization is an ideal one-stop resource for both beginners and experienced practitioners, including researchers, data scientists, statisticians, and other professionals in industry, who seek academic success and career advancement.

    Feel Free to contact me for book requests, informations or feedbacks.
    Without You And Your Support We Can’t Continue
    Thanks For Buying Premium From My Links For Support